First-principles calculation of electronic spectra of light-harvesting complex II.
نویسندگان
چکیده
We report on a fully quantum chemical investigation of important structural and environmental effects on the site energies of chlorophyll pigments in green-plant light-harvesting complex II (LHC II). Among the tested factors are technical and structural aspects as well as effects of neighboring residues and exciton couplings in the chlorophyll network. By employing a subsystem time-dependent density functional theory (TDDFT) approach based on the frozen density embedding (FDE) method we are able to determine site energies and electronic couplings separately in a systematic way. This approach allows us to treat much larger systems in a quantum chemical way than would be feasible with a conventional density functional theory. Based on this method, we have simulated a series of mutagenesis experiments to investigate the effect of a lack of one pigment in the chlorophyll network on the excitation properties of the other pigments. From these calculations, we can conclude that conformational changes within the chlorophyll molecules, direct interactions with neighboring residues, and interactions with other chlorophyll pigments can lead to non-negligible changes in excitation energies. All of these factors are important when site energies shall be calculated with high accuracy. Moreover, the redistribution of the oscillator strengths due to exciton coupling has a large impact on the calculated absorption spectra. This indicates that modeling mutagenesis experiments requires us to consider the entire set of chlorophyll molecules in the wild type and in the mutant, rather than just considering the missing chlorophyll pigment. An analysis of the mixing of particular excitations and the coupling elements in the FDEc calculation indicates that some pigments in the chlorophyll network act as bridges which mediate the interaction between other pigments. These bridges are also supported by the calculations on the "mutants" lacking the bridging pigment.
منابع مشابه
Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II
In natural light-harvesting systems, pigment-protein complexes (PPC) convert sunlight to chemical energywith near unity quantum efficiency. PPCs exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this Perspective, we examine the design principles of PPCs, focussing on the major light-harvesting complex of Photosystem II (LHCII), the most a...
متن کاملObservation of Electronic Excitation Transfer through Light Harvesting Complex II Using Two-dimensional Electronic-vibrational Spectroscopy.
Light Harvesting Complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis, and is arguably the most important photosynthetic antenna complex. In this work, we present two-dimensional electronic-vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy betw...
متن کاملPathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.
We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic sta...
متن کاملTwo-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex.
Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dyna...
متن کاملSolving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy.
The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 22 شماره
صفحات -
تاریخ انتشار 2011